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Abstract— With the continuous development of Artificial
Intelligence (AI), autonomous driving has become a popular
research area. AI enables the autonomous driving system to make
a judgment, which makes studies on autonomous driving reaches
a period of booming development. However, due to the defects of
AI, it is not easy to realize a general intelligence, which also limits
the research on autonomous driving. In this paper, we summarize
the existing architectures of autonomous driving and make a tax-
onomy. Then we introduce the concept of hybrid human-artificial
intelligence (H-AI) into a semi-autonomous driving system. For
making better use of H-AI, we propose a theoretical architecture
based on it. Given our architecture, we classify and overview the
possible technologies and illustrate H-AI’s improvements, which
provides a new perspective for the future development. Finally,
we have identified several open research challenges to attract
the researchers for presenting reliable solutions in this area of
research.

Index Terms— Artificial intelligence, hybrid human-artificial
intelligence, autonomous driving, theoretical architecture.

I. INTRODUCTION

AUTONOMOUS driving was first proposed in the 1950s,
and the related research has continued for many years.

Due to the development of Artificial Intelligence (AI),
the advance of autonomous driving is in a booming stage.
In 2014, the International Society of Automated Engi-
neers (SAE) released the J3016 automated driving classifica-
tion standard, and the latest version was released in 2018,
as shown in Fig 1. However, according to this standard,
most manufacturers still stay in level two and level three.
Although high-level Autonomous Vehicles (AVs) will be com-
mercially available in some jurisdictions, their usage and
application will be limited [1]. Based on experience with
previous technologies, it is hard to achieve fully autonomous
driving comprehensively [2], [3].

Autonomous driving has inadequate capabilities to handle
dynamically changing conditions due to sudden and com-
plex accidents [4]. Intelligent Transportation System (ITS)
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Fig. 1. The classification of SAE.

play a vital role in managing transportation and related con-
straints. ITS can be modified to handle the shortcomings
of autonomous driving by providing real-time data about
road conditions, traffic jams, and weather predictions in the
region of driving. Due to mobile phones and computers,
AV is a wheeled robot involved in many functionalities
and characterized by a high degree of coupling with other
features.

AI has powerfully prompted the core technologies related
to autonomous driving. For example, Computer Vision (CV)
allows AVs to get more environmental information than
humans [5]–[9]. Using the decision AI model trained from
a large amount of driving data, AVs can perform driving tasks
well in certain situations. Nowadays, the new wave of AI
emerges with the era of big data [2], [10], [11].

Although the last several decades have witnessed numerous
achievements of AI, its shortages are also evident. As we all
know that Deep Learning (DL) relies too much on labeling.
Meanwhile, it is a challenge for AI to realize the causality
between different things. In short, it is impossible to simulate
human intelligence by data merely [2]. Current AI algorithms,
such as Machine Learning (ML) and DL, pay so much
attention to the probability generated by data, which lead
to data spoofing and an inability to cope with unknown
situations [12]. Besides, it is limited by certain condi-
tions, namely deterministic information, complete information,
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Fig. 2. Hybrid Human-Artificial Intelligence.

static data, single task, and limited field [13]. The limita-
tion of AI also incurs the shortages of autonomous driving
systems [14].

The research on brain science has lasted for many years.
In the 1990s, some scholars analyzed the mechanism of human
brain waves in terms of cells and neural networks [15], [16].
At present, a new type of control system called brain control
is developing rapidly [17]. It can capture the weak brain
wave signals by susceptible acquisition equipment, amplify
the signals, then process and analyze it. It has been applied
in healthcare and achieved remarkable effects. The cogni-
tive science, proposed in the middle of the last century,
has also done much to shed light on the workings of the
human brain [18]. A wonderful prospect is that brain can
be linked with autonomous driving to control the vehicle
as per brain conditions automatically. It can be sufficient to
auto-drive the vehicle to a nearby hospital when a driver
suffers a heart attack, paralysis, or other severe medical
conditions.

Given the problems and technologies we mentioned above,
we introduced a hybrid AI. In the last few years, many scholars
introduced human participation into the AI system to complete
tasks that AI cannot fulfill independently [10], [19], which
formed the human-in-the-loop augmented AI [12]. Therefore,
we introduce Hybrid Human-Artificial Intelligence (H-AI),
a promising interaction paradigm, into autonomous driving to
solve the problems that traditional AI systems cannot solve.
There is a high coupling between the human and AI systems,
making the whole system perform much better than the two
single systems, as shown in Fig 2.

H-AI aims at solving the disharmony of human-machine
relationships in the hybrid system and finally realize
human-machine integration. Several similar concepts have
been proposed already, like Cyborg. Based on H-AI, we hope
to propose a semi-autonomous driving architecture emphasiz-
ing high human-machine coupling. Through effective interac-
tion media, the human agent and machine agent achieve the
driving task cooperatively.

In this paper, we summarized the autonomous driving
and AI from development and existing problems. The main
contributions of this paper are as follows:

1) Current limitations of AI are concluded. We point out
that introducing H-AI into an autonomous driving sys-
tem may make up for the deficiency of current AI.

2) After retrospecting the development of autonomous
driving, we present a theoretical autonomous driving
architecture based on H-AI and give a detailed review
of related technologies involved.

3) Some open challenges worthy of studying are also put
forward. Given those challenges, we summarize some
existing schemes and provide ideas to solve them.

This paper’s remaining structure is as follows: In section II,
we mainly talk about the background of policies of different
countries and milestones in industrial development. In section
III, the definition of Human-Machine Conflict (HMC) and
some existing problems are presented. Based on it, we propose
an autonomous driving architecture based on H-AI, which
may solve the problems. In section IV, the details of our
architecture will be discussed, and we reviewed the technolo-
gies which may be used. In section V, we discuss a simple
scenario to illustrate the advantage of H-AI-based architecture.
In section VI, we present several open challenges for H-
AI-based autonomous driving. In section VII, we conclude
and put forward a prospect.

II. BACKGROUND

The recent craze for AVs began with the Defense Advanced
Research Projects Agency (DARPA) Grand Challenge held by
the US department of defense [20].Nowadays, most countries
and companies are also attaching great importance on it. In this
section, we will summarize the development of AVs in national
policies and industry.

A. National Policies

Nowadays, each government is actively formulating related
policies and acts to promote its development of autonomous
driving [14]. AV can reduce traffic stress and transport costs
and improve productivity, and mobility [1], which has caught
policymakers’ eyes. At present, most countries are mainly
paving the way for AV testing, including expanding the testing
area and deregulating AV testing gradually. Moreover, several
measures have been taken to increase the generalization of
Electric Vehicles (EVs) in the domestic market which have
laid the foundation for the promotion of AVs at home [1], [22],
[38]. In the autonomous vehicle readiness index (AVRI) [38],
based on the level of policy and legislation, technology
and innovation, infrastructure, and consumer acceptance, they
summarized the development of autonomous driving across
30 countries and jurisdictions and ranked them. We are
going to introduce seven nations’ levels of preparedness for
autonomous driving. Table I shows some related policies of
them.

a) Singapore: In western area, AV testing is legitimate
on all public roads. In 2019, VOLVO had collaborated with
NANYANG Technologies University to test autonomous buses
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TABLE I

POLICIES ABOUT SERVAL COUNTRIES

in several sites. The government’s active promotion and appro-
priate road conditions make Singapore an excellent choice for
the manufacture and testing of autonomous vehicles [38].

b) The Netherlands: It did well on policy and legislation.
Also, government investment and numerous AV testing sites
enable the Netherlands to keep the leading position in AVRI
[38]. Although the government is actively developing AV
related policies, technical bottlenecks have slowed the spread
of autonomous driving on public roads. Thus they may use
AVs in closed areas or considering dedicated roads or lanes.
Even so, the Netherlands still has the most sophisticated and
developed self-driving related infrastructure in the world.

c) Norway: This country has high coverage of EVs and a
considerable market for it. The government has also legislated
to ensure every citizen has equal access to AVs [38]. In 2017,
AV testing had been allowed in some sites. In 2019, Ruter,
the Oslo metropolitan area’s mass-transit company, had tested
autonomous buses in the Norwegian capital, where three
driverless bus routes are available now.

d) United States: American technology companies and
carmakers dominate AV development worldwide [38]. Waymo
offers the most advanced self-driving solutions. Furthermore,
General Motors, as an established carmaker, after merging
with Cruise, has become leaders in making self-driving cars
and, in 2020, unveiled the Origin, a self-driving car designed
for ride-sharing. The government has built a series of laws on
autonomous driving since 2011, and most states have passed
legislation to make AVs legal. However, there is little concern
in the US about road infrastructure and self-driving public
transport [38].

e) Finland: The strong performance of its government
enables Finland prepared for autonomous driving excel-
lently [38]. It has comprehensive AV regulations and the
efficiency of the legal system. In 2019, GACHA Autonomous
Shuttle Bus, a self-driving bus that works under all-weather
conditions, had operated in Espoo. The leading research on
5G also boosts the popularity of AVs in Finland [38].

f) United Kingdom: The British government has made
many efforts to develop AV in recent years, including legisla-
tion, regulation, and unstinting investment. In 2014, the gov-
ernment had invested nearly iê200m to fund the research on
AVs. In 2017, the British Ministry of Transport and the center
for the protection of national infrastructure (CPNI) enacted a
set of principles to ensure the design process’s reliability and
security for AVs. Thanks to the appropriate ecosystem [38],
many trials are held in the UK, including a public service test
of a full-length 1.5-meter AV bus by three companies.

g) Japan: In 2014, Japan formulated the innovation of
automated driving for universal services plan and launched
the research and application project of autonomous driving
officially. In 2018, Japan’s national police agency held its first
research meeting to discuss related details and revised traffic
regulations. In 2019, the latest rule about AV testing had been
released. Japan has the largest number of AV-related patents,
and its excellent road quality is also an advantage to generalize
AV usage.

B. Industry

a) Waymo: As a technology company, Waymo aims
to provide the most advanced solutions for autonomous
driving. Because Waymo is the sub-company of Google,
it is well-funded and technologically advanced. Thanks to
its early start in AV testing on the public road, Waymo
has now amassed more than 20 million kilometers of road
data [39]. Waymo has collaborated with several large com-
panies. In 2020, it announced a partnership with VOLVO,
becoming the exclusive global partner of VOLVO for the
research on level 4 automated driving.

b) Baidu: Apollo is Baidu’s autonomous driving project,
which includes an open-source platform and solutions for
enterprises. In February 2020, the California authority released
the 2019 California Autopilot Disengagement Report, which
showed that Apollo’s AVs performed excellent in annual
MPI (the average mileage traveled between every two human
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Fig. 3. The timeline of six companies.

interventions). Based on the Apollo project, Baidu is branching
out into ICV and smart transportation.

c) Argo AI: It is a self-driving technology platform com-
pany funded by Ford and Volkswagen Group jointly. In 2018,
Argo began vehicle testing in Miami, Florida. In 2019, it had
announced a $15 million investment over five years to create
research center with Carnegie Mellon University. In 2020,
Volkswagen Group had invested $ 2.6 billion in capital and
assets in Argo AI to expand their global alliance to include
the electric vehicles business.

d) VOLVO: It is trying to move from a car manufacturer
to an IT technology company. VOLVO is a few compa-
nies to have a clear technical path and a long-term plan
for autonomous driving and test and apply it on the road.
It also attaches great importance to the safety of AV and is
working on a vision of zero casualties. Sunfleet, VOLVO’s
sub-company responsible for the car-sharing service, launched
a new mobile travel brand in 2018, integrating all the current
travel businesses. VOLVO is likely to introduce autonomous
driving solutions in the future that retain the option for humans
to drive cars.

e) General Motors Cruise: In 2016, GM acquired Cruise,
and now it has become an independent company. Headquar-
tered in San Francisco, its subsidiaries include Cruise Automa-
tion and Strobe, responsible for the self-driving develop-
ment and autonomous driving sensor development. Although
Cruise was a late starter, the former company’s experience in
self-driving research and GM’s ability to manufacture vehicles
have made it proliferate. According to the latest California
Autopilot Disengagement Report, Cruise’s MPI had climbed
from around 300 miles to 4600 miles.

f) Tesla: Tesla introduced an autopilot service to its
customers in 2015 firstly. The company collects the most
driving data used to train its AI models, which is a pow-
erful strength. It has never been stingy with its research on
autonomous driving. With the launch of a fully self-developed
chip in 2019, Tesla already has a complete industry chain.

Fig. 4. The taxonomy of autonomous driving architectures.

Its research on autonomous driving advocates using computer
vision and millimeter-wave instead of the lidar used by most
manufacturers, which costs a lot and performance poorly.

III. LITERATURE ON GENERAL AUTONOMOUS DRIVING

BASED ARCHITECTURES WITH H-AI

In this section, we intend to summarize and discuss the
existing architecture of autonomous driving as shown in Fig 4.
We present a taxonomy of existing architectures, as shown
in Fig 5. At present, autonomous driving architecture can
be classified as semi-autonomous driving characterized by
humans in the loop and fully autonomous driving without
human participation. Then, we propose a theoretical archi-
tecture based on H-AI. Note that the HMC is so crucial for
a hybrid human-machine system that we decide to discuss
it first.

A. Definition of Human-Machine Conflict

The HMC is a scene that can be defined as the operations of
the human and system is contrary [40]. It is an inherent topic
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Fig. 5. A general autonomous driving system architecture of H-AI.

in a hybrid system [41]. When the deviation of two actions
exceeds a threshold, the task may fail, or one of them is forced
to give up its operations [42], [43].

Frank O. Flemisch et al. discussed the origin of conflict in
the technosphere and biosphere perspective, and they indicated
that solving conflict was the key to a successful coopera-
tion [44]. In terms of semi-autonomous driving, the human
agent and system agent usually have the same driving goal.
However, they may make operations based on discrepant infor-
mation they collected. HMetaphor or the AiAIDo-Metaphor
could help us understand the conflict and provide us with
ideas [44].

At present, the research on HMC focuses on the design
of decision-making and arbitration module [44], [45] and
the transition between assisted and non-assisted control [41],
which relieves the conflict but ignores the nature of the
HMC. Essentially, it is different understanding of surrounding
information that incurs conflicts of human and system and the
ineffective of human-machine interaction can weaken a hybrid
driving system [46]. Thus, the best solution is enhancing the
interaction of two agents, which is in line with H-AI’s idea.
Such a highly coupled human-machine interaction paradigm
enables them to share information, eliminate divergences of
judgment, and make operations collaboratively.

B. Shared Control

The definition of shared control is humans and the driving
system drives the vehicle concurrently. Based on the control
interface, shared control has two contributions: blended shared
control and haptic shared control [47].

The operation of the driver and the system generate the
final information of the control system. When the driver’s

operation conflicts with the system’s judgments, the control
system can fix the car’s behaviors by the steer-by-wire system
and Erlien et al. proposed a shared control framework for
obstacle avoidance and stability control [48]. Blended shared
control can complete the task more efficiently compared
with the way without the shared controller [49]. Under the
condition of operator input delay and distance drift, a hybrid
human-machine shared control structure also performed well
in some situations [50].

The research on shared control architecture is still necessary.
It can be applied in Advanced Driver Assistance Systems
(ADAS) [39], like lane-keeping assistance system (LKAS) is
an example of applied shared control [51], [52]. For blended
shared control, the system’s operation is sightless for the
human, which hinders human-machine interaction. Given the
problem, haptic shared control was raised. Such an interaction
paradigm enables the human to be aware of the decisions
of the automated system, which could generate short-term
performance promotion and performed better than blended
shared control [53].

The design of a shared control driving system is affected by
several factors. The media may be the prime factor and steer-
ing wheel is a popular solution [47], [52], [54], [55]. Based
on the media, the guideline of the automated system should
be defined. Li, Mingjun and Cao et al. adopted feedback
torque on the steering wheel to achieve haptic shared control,
which is possible to infer the driver [52]. Neuromuscular
Analysis can also be a resultful guideline to haptic shared
control [47]. Different guidelines apply to various assistance
systems, but the main goal of shared control can be concluded
to enhance the comfort and safety of the human-in-the-loop
driving.
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According to the haptic shared control architectures,
the conflict between driver and automated systems seems
obvious. The Model Prediction Control (MPC) is used to strike
a balance between stability and avoidance, but the collide is
always existing [48]. The constricted shared control algorithm
is a source that incurs the conflict, which can be reduced
by adopting individualized guidance torques [56]. However,
the method could not eliminate the conflict because both lateral
and timing errors were not solved. Besides, the level of haptic
shared control is also a key factor. In terms of various degrees
of haptic shared control, Franck Mars et al. summarized the
shared control system and concluded that the control system
with a low level of haptic authority might be more beneficial
for drivers [41]. Based on the cooperative status between
the driver and automated system, Ryota Nishimura et al.
proposed a methodology that achieved smooth driver-initiated
lane changes and improved lane-keeping performance excel-
lently [57].

C. Cooperation Shared Control

Cooperation driving emphasizes dynamic task distribution,
interface design, and keeping a shared model [58]. Compared
with haptic shared control, such an interaction paradigm
enables humans and the system to handle what they are
adept at and decreases the possibility of HMC. In [59], they
graded the autonomy mode and discussed the human-machine
cooperation under various degrees of autonomy mode. They
pointed out that a human operator can decrease the perturba-
tion of an autonomous system and designed a system, based on
autonomy mode and cooperation control, to adapt to various
environmental constraints. However, the system is not able to
learn from the driver’s decisions, which is significate for the
robustness of autonomous driving system [60], [61].

A system is not always reliable during driving and the driver
need to monitor it [62]. Meanwhile, the human driver needs
to consider some irregular conventions while driving, making
the system confused. The transition process is determined
by driving state that refers to the driving task performed by
the driver or automated system at a particular moment [63].
The control transfer initiator can be the driver or automa-
tion, and human factors can be the key to the transition
of control. In recent years, the research on human factors
focuses on the driver’s behavior and cognition [63]. In 2001,
a theoretical framework about human-machine cooperation in
dynamic situations had been proposed [64], and it had been
developed in 2009 [46]. Arbitration module can be used to
reduce conflicts. Baltzer et al. designed a cooperation driving
system based on dynamic task division, which was applied
in automated vehicles successfully [65]. Shortly, the current
studies are mainly about choosing different transfer strategies.
van Wyk et al. raised an optimal driving-entity switching
policy based on an MDP model and extended the model by
using approximate solution strategies [66].

In terms of the semi-autonomous driving system, the driver
and the automated system complete the driving tasks
cooperatively. Therefore the design of Human-Machine
Interfaces (HMI) is quite curial. HMI is the medium

of human-computer interaction, and human-machine
coopreation [67]. Guo, Chunshi et al. proposed a cooperative
driving system in the case of highway merging, and they
adopt the haptic shared control to enhance the feedback of
HMI [58]. The user trust for the system is also a key factor of
HMI design. An HMI focusing on user trust was developed,
and they indicated that user trust is dynamic and sustains long
after the interaction occurring [68]. Thus, when we intend to
introduce the user trust factor into HMI, a holistic perspective
on trust should be considered.

D. Fully Autonomous Driving

Although the interference of human factors is negligible
for a fully autonomous driving system, it needs to complete
all driving tasks such as the perception of the surrounding
environment, the avoidance of obstacles, and decision-making
in complex environments.

Fully autonomous driving is also a hot spot and lots of
related architectures have been proposed. After summarizing
the existing architectures, Ta et al. proposed a fully automated
driving architecture for the future [69]. In 2011, a team for
DARPA Urban Challenge presented a safety-oriented, fully
autonomous driving vehicle, and they discussed the details
about the design of their car and related algorithms [3]. The
challenge is how to ensure the system’s robustness and the
safety of driving without human monitoring [3]. Moreover,
the fully autonomous driving scheme’s cost remains too high
to be commercially available immediately [1].

Even if fully autonomous driving has realized in some
situations now and may be widely applied in the future,
it cannot replace semi-autonomous driving and manual driving
because some people will enjoy driving. So in our opin-
ion, those schemes for autonomous driving should not be
shockable but complement each other to meet different user
needs.

E. General Autonomous Driving Architecture With H-AI

Semi-autonomous driving remains a focus for autonomous
driving [1] because fully autonomous driving will probably
not affect situations comprehensively and encounter a set of
technical and ethical obstacles [63], [66]. Also, the architecture
we proposed is a kind of semi-autonomous driving.

HMC is always a pressing challenge of semi-autonomous
driving. In our opinion, it is insufficient human-machine
coupling that triggers conflicts. Some similar opinions were
also proposed in [44], [62], [70]. Thus, a theoretical archi-
tecture based on H-AI is derived, as shown in Fig 5. The
function of general autonomous driving systems includes
sensing, decision-making, and control [69], [71]. Note that
the human-machine interaction is so critical in the whole
system that we separately extract human-machine interaction
as a separate part. Such a mediator module is the key to
this architecture to manage and resolve the conflict timely.
Therefore, our architecture contains six parts: sensors module,
action module, data fusion module, decision-making module,
interaction module, and control module.
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Fig. 6. The taxonomy of technologies related to autonomous driving.

F. Discussion About the Arbitration

We introduced the arbitration sub-modules into each mod-
ule. Morignot et al. [72] introduced the conception of ITS [70]
into semi-autonomous driving, which indicated that the arbi-
tration module generated the unique motion from several
sources, including the reliability of the automatic system,
the output of the autonomous driving module, and humans’
operation. The arbitration is characterized by dynamic and
real-time. It also determines the control priority of the vehicle.
When one party is authorized as the master, the other party’s
operation and a decision will be regarded as a modification
and supplement. Introducing arbitration into semi-autonomous
driving can never be a new idea [46], [58], [72], [73].
The fuzzy logic approach may be an effective solution to
integer multi-source information [72]. The human’s perfor-
mance and reactions to the road conditions are different
each time they drive. Based on historical data, such as the
average driving ability of drivers, the automatic system’s
performance score, probability prediction can dynamically
adjust the weight of human agents and machine agents in
the system. We can also design the second-level probability
prediction function based on some scenarios to improve the
arbitration module’s accuracy further. Because the design
of an arbitration system is always complicated and H-AI
is still in its infancy and full of potential, we would
discuss the possibilities rather than provide a solution
specifically.

IV. DETAILED OVERVIEW AND FUTURE DEVELOPMENT

INVOLVED IN THE ARCHITECTURE

In this section, we summarize the related technologies
and schemes that may be helpful for the implementation of
H-AI architecture. We also indicate the problems of them and
explain how H-AI may solve them. About the technologies
related to autonomous driving, we also make a taxonomy,
as shown in Fig 6.

Fig. 7. The hierarchical data fusion process of H-AI-based architecture.

A. Sensing Systems and H-AI

This section is related to the sensor module in Fig 5. The
main task is to collect information about the state of the
vehicle, location, and surrounding by a set of sensor devices.

The vehicle’s state includes speed, energy-consuming, and
press of wheels. Those states are usually detected by the
odometer, Inertial Measurement Unit (IMU), gyroscope, and
other equipment. At present, the technologies are mature and
widely applied in vehicles [7]. It is an popular choice to
adopt high-precise maps and IMU or radar to get position
information. High-precision maps provide a large amount of
driving assistance information with the accuracy of centimeters
[74]. The IMU can get the current vehicle’s position in the
coordinate system by calculating the relative position of the
rotating axis and the external balance ring, then obtains the
real-time information. However, the error of the IMU will be
accumulated all the time until the result is wrong. At this
time, device compensation is usually used to eliminate such
error [3].

The sensing technologies include visual perception, radar
perception [75], and microwave perception. With the develop-
ment of AI, applying CV to AVs becomes a hotspot [76], [77].
Using DNNs can significantly improve the accuracy of per-
ception [78], [79]. The CV-based autonomous driving systems
mainly have two paradigms: mediated perception approaches
making a driving decision based on complete surrounding
information, and behavior reflex approaches through matching
an input image to a driving action [80]. The visual perception
scheme is expensive and does not perform well at the moment.
Compared with it, radar perception technology is relatively
mature and performs well in many scenes. By combining
various sensing technologies, each technology’s defects can
be eliminated to the greatest extent, and the robustness of
the whole perception system can be improved [8], [81], [82].
At present, the popular scheme is to use cameras to obtain the
object information and radars to detect the relative distance
between the object and the vehicle [83].

There are still several challenges. Sensors may break down
when the weather condition is quite terrible [8]. Laser scanner
technology has been a reasonable way to improve the visibility
range in foggy weather. The dependencies between light
fog transmission and wavelengths are the key factors [4].
In the computation of visual semantics, it is not easy to
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balance the trade-off between accuracy and computational
cost. An offline-online strategy was proposed to settle it [84].
In [85], an object recognition system through classifying the
tracks of all the objects was presented. However, in the case
of a complex environment, the system still have difficult
to understand the surroundings precisely [7], [8]. In short,
a combination of a series of technologies seems not to
enable the system to handle the open-ended environment
completely.

B. Cognition and Interactivity Between Driver and Vehicle

This section is related to the interaction module in Fig 5.
The interaction module is the interface for information
exchange. Most of the operations of the system should be
shown to the driver through it. Also, and it collects the driver’s
information.

The feedback information mainly comes from each mod-
ule’s arbitration system and is shown through HMI. Based
on the idea of cooperation shared control, the information
should be informed to the user in various forms, such as text,
image, and voice. Results given by the arbitration system and
information collected by the sensor module are required to
be shown in the interaction interface [86]. Also, Bach-y-Rita
et al. proposed an HMI based on brain science research, which
conforms to the idea of H-AI [87].

The conflict between humans and machines is an inherent
challenge of semi-autonomous driving. An approach to resolve
conflict is driver behavior modeling [88]. In [89], dynamic
Markov models recognized and predicted human behaviors
through the data collected by a series of sensors. In a cogni-
tive architecture, computational modeling has developed as a
powerful tool for analyzing the complex task of driving. In the
context of ordinary user abilities and constraints, a model
understanding driver behavior was presented in [90], which
served as a basis for predicting and recognizing driver behav-
ior. If the driver’s driving behavior as a servo performance
is optimal, control theory could be used to model the driver
behavior effective method. In the work of MacAdam and
Charles C, they proposed a model that reproduces the driving
process by minimizing or maximizing the objective function in
the context of interference and constraint [91]. The fuzzy logic
is also proved to be a mature method, which can accurately
determine the minimum longitudinal safety distance during
driving so that the possibility of collision will be decreased
[92]. Also, the decision maker’s weight might be necessary to
resolve the conflict [93].

At present, driving behavior modeling is the popular solu-
tion to build an intelligent controller [88]. Nevertheless, those
methods use driver information incompletely. As we men-
tioned in III-A, the HMC is that the human agent and the
system make decisions based on incomplete environmental
information concurrently when they communicate with each
other inadequately. The high coupling degree of humans and
the automatic system can make up for the conflicts caused by
such insufficient interaction and fundamentally avoid conflicts.
Thus, we must introduce the driver’s information into the
architecture comprehensively.

The driver’s information includes appearance, eye move-
ment, iris, behaviors. We can collect them to adjust the driver
agent’s relationships and the automated system [94]. In 1991,
a testing report about monitoring drivers’ physiological signals
during the driving process was released [95]. Also, the related
research is summarized in [96], [97]. Eye movements can be
used to analyze whether the driver is distracted in real time
[98]. Besides, a fatigue degree is a vital factor in evaluating
the reliability of the driver. In [99], based on the CV, they
monitored and traced the face information and eye movement
to calculate fatigue. However, fatigue should be reflected in
more indicators. In [100], a fatigue detection method based
on multiple visual cues was presented, which performed more
reliably and precisely than single or fewer indicator methods.

Humans have a much better understanding of the
open-ended environment than machines [12], and utiliz-
ing human cognition is the most challenging step. For a
semi-autonomous driving, people and systems dynamically
perform driving tasks. They share information to make driving
decisions efficiently. Based on the same driving goal, the driver
and system can make the final decision convergence through
negotiation, which improves user experience.

Although those methods collect and analyze the psycho-
logical information effectively, human cognition, the most
significant information source for a human, is always invisible.
In 2008, Anup Doshi and Mohan Trivedi adopted sparse
Bayesian learning to predict the driver’s intent of lane change
by analyzing the driver’s eye gaze and head motion [101].
Similar works were presented in [102], [103]. The general
design scheme uses human physiological data to train a clas-
sification or probability model to predict the driver’s intent of
some operations. However, such predictions are often limited
to specific scenarios and driving intentions are only a part of
driving cognition.

As we discussed in III-B, the current interaction model
uses the driver’s physiological data to train the AI model.
In essence, it is a mapping between physiological signal
and driving intention [88], which is not reliable, because
the physiological signal itself is an indirect representation of
human thinking. During information transmission, the indirect
transformation of information will produce random noise
which is hard to eliminate. With the accumulation of errors
caused by noise, errors will be produced eventually.

Human brain waves are a more straightforward represen-
tation of human cognition. Thus, utilizing brain waves is a
tremendous advantage, and an efficient way of man-machine
information exchange is required. Using BCI to collect and
analyze human intention is a typical solution and widely
applied in health care [104]. Compared with other interac-
tion paradigms, like haptic interaction, using BCI to analyze
driving intention has the following advantages:

1) Delay. Typically, the time cost of predicting a driver’s
intention includes the time it takes to generate physio-
logical signals from the reaction of the human brain and
the time it takes to analyze physiological signals. The
length of the former depends on the characteristics of the
individual and cannot be changed by technology, while
the latter can be shortened by technology. Since BCI
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Fig. 8. The collecting and processing the driver information of H-AI-based
architecture.

direct analysis of brain waves, the cost of time mainly
lies in the processing of brain signals. The H-AI requires
rapid information exchange, to share information and
negotiate decision-making in a short time.

2) Accuracy. Human intention is characterize by indetermi-
nacy. During each driving process, the driver may be in
a different state, establishing an accurate and universal
model to predict driving intention is complex [88].
Compared with using other physiological signals, brain
waves are much more direct for prediction and reflects
the driver’s intention more precisely.

3) Robustness. In the process of driving, people may have
a state of mismatch between their behavior and inten-
tion, such as delayed response or misoperation. This
abnormality will lead to the failure of the system to
understand. The direct analysis of driving intention using
BCI can fundamentally avoid the potential risks brought
by such anomalies, making H-AI-based system more
stable.

4) Realizability. Neuroimaging has shown that decode a
person’s consciousness is likely, which makes under-
standing human cognition possible [105]. BCI is now
gaining popularity. The rapid advance of applied science
and AI makes BCI move from theory to application.
Both invasive and non-invasive BCI have achieved
breakthroughs, making it reasonable to imagine BCI as
a potential human-computer interaction medium in H-AI
systems.

At present, BCI research mainly involves improving accu-
racy, reducing delay and cost, and designing for generaliza-
tion [104], [106], [107]. Inspired by that, we hope to apply
BCI to the system to meet the requirement of H-AI. For a
H-AI-based architecture, the acquisition of driver’s informa-
tion is shown in Fig 8.

The current BCI technology includes hardware technologies
and software platforms. The electrode is an integral part
of BCI devices. In [108], using dry EEG electrodes, they
designed a visual-evoked-potentials-based BCI system that
performed stable and high-speed. BCI has a wide variety of
software platforms including BCI2000 [17], BCILAB [109],
openVIBE [110], openBCI [111], BCI++ [112]. According to
the way the BCI is placed, it can be divided into invasive BCI

and non-invasive BCI. The invasive BCI surgically places elec-
trodes in the human brain and captures high-quality signals.
The non-invasive BCI, on the contrary, collects brain signals
through in-vitro devices, but the signal quality is relatively
lower. In [113], through a slow but reliable BCI called P300,
the user completed a scheduled walk in the wheelchair. It is
a young and cross-cutting field. The functional framework of
BCI had been proposed in [107], which come up with an idea
for later BCI design.

A set of progress lays the foundation for BCI to be applied
in more fields. For the no-invasive BCI, in 2019, a laboratory
of the University of San Francisco(USF) extracted the deep
semantics from human brain activity and translated them into
words first. Its lowest wrong word rate is 5 percent [114]. Neu-
ralink, a BCI technology company, revealed its latest invasive
BCI device and surgery robot on 28 August 2020 [115]. Their
invasive BCI collected the animals’ brain activity explicitly
and continuously and their BCI implantation was minimally
invasive and addressed the impact of chip fever for an organ-
ism. Facing the challenges of inadequate long-term reliability
and time-consuming recalibration for BCI, Daniel B. Silver-
smith et al. provided a plug-and-play BCI that performed
stable [106].

Although BCI has been widely applied in health care, it still
faces a set of challenges [104]. Firstly, there is no uniform
standard and entirely appropriate electrode (the perception
module of BCI) of BCI [104]. The ethical issues are quite
considerable. BCI is still in its infancy, and at present, invasive
BCI cannot be used commonly because the cost of wearing
such a device might be unacceptable for a healthy person.
However, as these technologies continue to evolve, there will
surely be a future in which machines become part of the
human body (Cyborg) to improve body abilities rather than
solve physical obstacles. Then H-AI will be a familiar concept,
where humans and machines communicate and collaborate in
language, behavior, and thinking.

C. Data Fusion and Arbitration

This section is related to the data fusion module
in Fig 5. In this part, Multisensor Data Fusion (MDF) and
human-machine data fusion are the main tasks. The raw data
comes from the sensing module is integrated and processed
so that the decision-making module can use them.

The data collected by the sensing module often comes from
multiple sensors, which need to be processed and integrated.
The fundamental process of MDF is transforming raw data to
decisions, and inference [82]. However, the transformation was
a complex and composite process. The scheme of data fusion
is hierarchical [116]. Early MDF schemes extracted features
from the raw data, integrated those features and finally built
the model by machine learning or some statistical methods.
With the rise of DL, later schemes, after feature extraction,
undergo neural network training, and carry out multi-model
features. Then, those features are integrated according to a
distinct weight [117].

Current MDF can be achieved at the data layer, the fea-
ture layer, and the decision layer [82]. Nevertheless, the
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multisensor data are usually heterogeneous, and it is hard to
complete the fusion on the data layer. In recent years, many
data fusion systems have been proposed, like JDL data fusion
framework [118]. Many other frameworks were presented
in [119], which provided ideas for the data fusion system
design.

The fundamental requirements of fusion algorithms are
high robustness and parallel computation. Kalman filter-
ing has always been an excellent algorithm for processing
redundant data of low-level real-time dynamic multisensor.
It determines the optimal fusion and data estimation sta-
tistically by recursing the statistical characteristics of the
target model [120]. Dynamic Bayesian Networks (DBNs) are
probabilistic graphical models representing random variables
with conditional dependencies. DBNs perform excellently in
handling time-series data, and multimedia analysis tasks [117].
Note that DNNs have been widely used in data fusion in recent
years [6], [9]. DNNs have strong fault tolerance, self-learning,
and self-adaptation ability and can simulate complex nonlinear
mapping, which meets the multisensor data fusion [121].

However, there are few techniques for combining human
cognition with information gathered by machines. We believe
that the idea of MDF can be an excellent reference. The
process is shown as Fig 7. According to our architecture,
human cognition is fused with multisensor data. Those data are
standardized and extracted to generate multi-model features
which should be processed by DNNs [118]. Finally, data
fusion algorithms integrate those data to draw the decision.
The state vectors can be used for data fusion and then make
a joint inference to obtain the final result. Note that fuzzy
logic [122] may perform better than binary logic because the
information generated by human intention is often vague and
uncertain.

At present, there is no general model and algorithm for
MDF. In the application of automatic driving, data incon-
sistency caused by multiple sensors has always been an
obstacle. The robustness and real-time requirements of the
information fusion framework will increase significantly. Fur-
thermore, the introduction of human cognition will bring new
challenges to information fusion, including data uncertainty,
system design, and other system interaction interface design.

D. Global Path Planning and Behavior Planning

This section is related to the decision-making module
in Fig 5. This module will generate the vehicle’s global path
planning and behavior planning by utilizing the information
fusion module.

The global path planning is built on a topological map, and
its implementation relies on a high-precision map. It refers to
find an available and collisionless path that can safely reach the
target point from the starting point based on the environmental
model [123].

In terms of environment modeling, grid methods may be a
common choice for map segmentation, which has performed
quite outstanding. The grid methods divide the workspace into
regular and uniform grids with binary information. Binary
information indicates whether there are obstacles at the grid.

A grid without obstacles is called a free grid. Otherwise, it is
an obstacle grid [124].

The path search of AVs is a 3D path planning for wheeled
robots. In [123], they summarized and classified 3D path plan-
ning algorithms that have been applied in aerial robots, ground
robots, and underwater robots. Dijkstra algorithm [125] and
A* [126] have been common optimal search algorithms. Some
random-exploring algorithms like probabilistic roadmaps [127]
and rapidly exploring random tree [128] perform well in spares
graph. Inspired by metaheuristic technique, Mazzeo, Silvia,
and Loiseau, Irene used the ant colony algorithm that performs
better than most of the other algorithms [9], [129]. After the
path search is complete, we need to set appropriate route
costs to generate the final results. DL is a way to use path
selection as a recommendation system, emphasizing human
choice. A system utilizing a fuzzy neural networks to calculate
the selection possibility of each route was presented in [130].

The behavior planning makes final action decisions based on
all the external information collected by the information fusion
module, interaction module, and path planning path. Compared
with global path planning, behavior planning is a process of
local decision. The behavior mainly includes lane change,
obstacle avoidance, and traffic sign recognition. It is difficult
to use a single model to achieve behavior planning. At present,
the most widely used approach is based on the determin-
istic behavior decision-making rules, including MDP [131]
and partially observable MDP [132]. BOSS, the autonomous
vehicle of MCU, won the championship in DARPA, adopted
the rule-oriented decision-making method to calculate the
distance between lanes to complete lane transformation [133].
In [134], a real-time path planning algorithm was presented,
which provided an optimistic plan for avoiding static obstacles.
In their approach, each candidate route was transformed to
a Cartesian coordinate system, which would be evaluated
by obstacle data. In terms of obstacle avoidance of mobile
robots, Wu et al. proposed an integrated algorithm based
on lidar, which made use of the nearest point around the
obstacle to draw the shortest route to avoid obstacles [75].
Li et al. proposed a mobile robot collision avoidance method
based on HyperOmni Vision and their approach combined
the improved dynamic window approach with an artificial
potential field [135].

The decision-making module needs to compensate for
the error accumulation of each sub-module. Some scholars
proposed to use a Bayesian probabilistic model to model
behavioral decisions instead of relying on deterministic rules
[132], [136]. The advantage is accessible to modularization,
and the whole process is transparent so that the driver can
correct the decision-making process, which is in line with
H-AI and considers the role of the human in the system.
By analyzing the preception data or direct interference, errors
will be compensated. Also, in an open-ended environment,
emergencies are difficult to avoid. In extreme cases, when the
system judges that it cannot understand the situation, it will
deliver the driver the right to drive. However, with H-AI
development, the transfer of driving right needs more research
and consideration according to a specific scenario. Besides,
in recent years, with the proposition of reinforcement learning
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(RL) [137], scholars deem that RL may be an appropriate way
to decide driving priority [138].

E. Trajectory and Velocity Planning

This section is related to the motion planning module
in Fig 5. The control module is responsible for generating
the motion planning that includes trajectory planning and
velocity planning [139]. This process can be thought of as
solving the optimal path problem in a given range under
a certain constraint [140]. According to the final action
decisions, motion planning is to make a time-related track
route passed to the execution module. Note that the driver’s
operation in the H-AI-based interaction paradigm also affects
the system, impacting the final vehicle’s movement. Once the
motion planning is achieved, the result will be delivered to the
execution module.

Trajectory planning was developed to solve the mechani-
cal arm movement problem initially [141]. Trajectory plan-
ning, based on the existing planned route, considers vehicle
dynamics to correct the actions that cannot be completed
by vehicles generated by path planning [4]. In term s of
autonomous driving, vehicle dynamics and traffic regulations,
and interior comfort should be taken into consideration [142].
When the trajectory planning is completed, speed planning
will assign velocity and acceleration information to each track
point [143]. In [144] a motion planning approach based on a
rapidly-exploring random tree was presented, which can still
work in an open-ended urban environment. In [145], they
proposed a hierarchical motion planning framework to deal
with navigation problems. The mobile robot’s control plan is
described in detail [142], [146].

Motion planning is quite sensitive to calculating delays,
and how to cooperate and coordinate the various parts is an
unavoidable challenge. Fortunately, the research on motion
planning is relatively mature [146]. At present, the main
idea is to decompose a complex problem and use multiple
modules to solve each sub-problem. There are also several
options available, most of which work well. Similarly, we hope
to introduce human operation to make the vehicle’s actions
more reasonable. By analyzing people’s states and manipu-
lations, the arbitration system will decide what to do with
people’s input information and adjust the weight of people
and machines dynamically.

V. A SIMPLE MANEUVER OF H-AI-BASED

AUTONOMOUS DRIVING SYSTEM

This section illustrates our proposition’s advantage through
a simple maneuver, as depicted in Fig 9. We will also
discuss how H-AI-based architecture solves the HMC that is
unavoidable for existing semi-autonomous driving.

A. Illustration of the Scenario

As Fig 9 depicts, the driver makes a maneuver while
his vision is blocked and the sensors detect the oncoming
motorcycle. The automatic system must want to prevent the
driver from changing lanes because it is likely to send a

Fig. 9. A simple scenario about overtaking.

collision. In such a scenario, the driver makes a different
maneuver from the system entirely, which raises HMC.

B. Discussion About the H-AI-Based Architecture

In this scenario, as we discussed in IV-B, HMC incurs due
to the operation of two agents based on different information.
As shown in Fig 9, there is a difference in the world perceived
by humans and autonomous driving systems. Current sensors,
information fusion, and high-precision mapping enable the
system to collect more abundant information than the human.
However, the human excels at judging and predicting the
things around them. Therefore, it is inevitable for human
agents and system agents to collide with each other. For
the traditional ADAS, without a strong message, users can
not know why the system rejected its operations. Then,
the traditional interaction approaches incur the delay that the
driver processes the sensory information. In the case of an
emergency, it may lead to severe consequences. Thus it is hard
to strike a balance between user experience and security [147].
We should strengthen the communication between the driver
and the system.

H-AI-based architecture emphasizes the high coupling
between the human agent and machine. The conflict is
the friction of their operations. As we all know, humans
intent guides their operations while instructions control the
machines’ actions. Since all of those processes happen before
the two agents making the operations, the machine and
human are not in conflict with each other but communicate
about decision-making, which improves the user experience
of semi-autonomous driving while also improving the safety
of driving.

There is uncertainty in predicting the driver’s intention
through movement and physiological signals. Driving behavior
is controlled by the driver’s thinking. A behavior may corre-
spond to a set of various intentions, and the probabilities of
these intentions are different in some scenes, which requires
the establishment of complex models to find the optimal
solution. However, unknown intentions lead to a failure of
prediction. BCI is used to translate the prediction of driving
intention into direct communication decreasing the HMC.
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Under the scenario shown in Fig 9, BCI will capture and
analyze the driver’s lane change intention before the driver
makes the lane change action. When the system senses an
oncoming motorcycle, it analyzes road conditions and vehicle
speed to make a judgment of a high-risk collision. The system
will inform the driver of this judgment through the BCI
immediately and make the final arbitration according to rules.
Once verify the danger, the driver can choose to give up the
lane change operation or change the timing of the change.
The whole negotiation is rapid because it builds on the human
brain’s thinking.

VI. OPEN CHALLENGES

In this section, we are going to discuss several open chal-
lenges. Meanwhile, in the perspective of H-AI, we hope to
provide some promising solutions.

a) The integration of complicated systems: Since AVs are
regularly composed of multiple subsystems, how to reduce
the conflicts among various parts and make each module
cooperate efficiently is the difficulty of the overall design
[148]. Also, how to achieve fault tolerance is a complicated
problem. The integration of algorithms designed for each
part also needs to consider many factors, including screening
of information, noise, and error accumulation. In [3], [133],
they provided ideas about enhancing the autonomous driving
system’s integration and robustness.

b) The ability of prediction: In an open environment,
the current prediction algorithms are likely to make wrong
judgments. Thus, the idea of using the Bayesian probabil-
ity model to make decisions was proposed. The idea of
Bayesian is in line with the real world because events happen
with a certain probability rather than a fixed model [149].
Decision-making based on Bayesian probability may be an
effective way to handle the uncertainty of driving [150]. The
enhancement of the predictive capability is related to AI
development, which enables autonomous vehicles to complete
driving tasks in complex scenes and achieve higher levels of
autonomous driving.

c) Ensure robustness and interaction problems during
driving: Current technologies used in autonomous driving
often struggle to maintain reliability in the face of complex
scenarios and extreme weather conditions. In [151] based
on the driving experience of Tesla Model S, they analyzed
the problems in human-computer interaction, especially the
Situational Awareness (SA), and provided relevant solutions.
In terms of drivers’ attention in human-computer interaction,
in [152], they compared different systems and concluded
that frequent handover would increase drivers’ burden, which
provided a basis for analyzing and solving drivers’ distraction
and retention in human-computer interaction. The research
concerned will make semi-automatic driving more efficient,
which is also the key to introduce H-AI into the automatic
driving system.

d) Better usage of human cognition: Understanding
human cognition and making use of it is not an easy thing for
a machine. Human cognition can be manifested in many ways.
Fortunately, today’s perceptual technology is quite advanced
and can capture most of the information. With cognitive

science development, the research on the human brain and
thinking has been deepened continuously. In [18], the author
discussed the possible problems based on specific cases and
points out the key to understanding the thought and rea-
son of humans is understanding the complex relationships
and interactions between different types of strategies and
resources. In [153], a wheeled robot with a simple structure
directly controlled by the human brain was proposed. The
related research will further enhance the judgment ability to
drive systems in complex environments and reduce accidents,
making H-AI possible.

e) Data privacy protection: The H-AI based architecture
involves the cognition data that is extremely privy. The cogni-
tion data collected by experiments are limited now. However,
in the future, with the advance of research on brain science
and BCI, many systems will get interfaces to process cognitive
data and its protection will be quite significant. In terms of
autonomous driving, it must be known which data are relevant
to driving, which data are expected to be obtained by the
autonomous driving system, and how to specify the degree
of acquisition of cognition data. These challenges may be
overcome with the development of brain science, cognitive
science, and BCI. In [154], they discussed data sharing in cog-
nitive science, which may insight us. Generally, data privacy
protection is significantly complicated and considerable.

f) Some ethical challenges: Autonomous driving raises
ethical questions, such as accountability for accidents. Also,
the trust between the driver and the system should not be
ignored. How to express trust and integrate the trust into
the carrier’s perception and planning are factors to be con-
sidered. Introducing H-AI can address some of these issues,
such as accountability in accidents and increased accep-
tance of autonomous driving. But it will take time for such
a high degree of human-computer coupling to be widely
adopted.

VII. CONCLUSION AND OUTLOOK

We reviewed and categorized the existing schemes of
autonomous driving and present a taxonomy of autonomous
driving architectures. Then, we proposed a theoretical archi-
tecture based on H-AI. The overview and future develop-
ment involved in autonomous driving architecture were also
summarized. In a similar vein, we presented a taxonomy of
technologies related to autonomous driving. For H-AI-based
architecture, we emphasized human information integrity and
man-machine integration rather than machine replace drivers
merely. Such a people-oriented driving scheme can pro-
mote autonomous driving and maybe a part of ITS in the
future. We put forward several open research challenges of
autonomous driving architectures that may focus on future
research. In the future, humans and machines will cooperate
and exchange thinking in contact or non-contact ways. With
the development of brain science, BCI, and other related
technologies, such human-machine relationships will appear
shortly. In the future work, we shall evaluate the real-time
autonomous driving scenarios where enormous bridging is
incorporated for data exchange across different emerging net-
works and various input support using H-AI.
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